DANSK MILJØRÅDGIVNING A/S ... din rådgiver gør en forskel

Use of geostatistical modelling in investigation of soil contamination – working toward a better definition of remedial mass and volume

Per Loll, R&D Manager, Ph.D. DMR A/S

N X N

Theodora Tsitseli, Claus Larsen, DMR A/S

Arne Rokkjær, Peder Johansen, Henrik Østergaard, Niels Døssing Overheu, Capital Region of Denmark

NORDROCS, September 5th, 2018

DMR

Background for application of geostats

- A lot of resources are spent on investigating and remediating contaminated sites, especially chlorinated solvent sites (DK).
- Remediation is the game of reducing mass flux/exposure
 - Flux is related to concentration and volume
 - Which again is related to mass
- And the game becomes: Find the <u>mass</u>!
- Inherent inhomogeneities in geology and contaminant concentrations lead to uncertainty.
 - How can we <u>deal with uncertainty?</u>

Per Loll, DMR A/S

NORDROCS, September 5th, 2018

• In recent years, we have seen a dramatic drop in sample prices, and an increase in data density.

=> Geostatistical modelling

Lots of data vs. data presentation and communication

How should we present our data and communicate with clients and authorities? (one of my reports from 2014)

DMR[®]

- It takes a lot of effort to get a good feel for the data
- Geostatistical software/modelling can help us compile and visualize the data
- 3 *Per Loll, DMR A/S* NORDROCS, September 5th, 2018

Mass estimate – including uncertainties

(m³)

5.830

1.641

645

101

konc.

(mg/kg TS)

0.37

2,53

7.12

13.91

SUM:

jordvolumen

(m³)

4.189

996

544

101

(mg/kg TS)

0.1 - 1.01.0 - 5.0

5.0 - 10

> 10

TCE-

masse

(kg)

2,6

4.3

6.6

2,4

Ca. 16

- Area · depth · $\rho_{\rm h}$ · avg. conc. = 30 kg TCE
- Added uncertainty on layer thickness \pm 0,5 m
- Key points:
 - 13-19 kg TCE It's time consuming and associated with low "confidence"
 - Geostatistical software/modelling can help us

Per Loll, DMR A/S NORDROCS, September 5th, 2018

Advantages of applying geostatistical modelling

- I have applied a software package (Kartotrak) at ~ 10 cases now.
- So I want to relay to you some of the things I really like about geostatistical modelling.
- I feel like I get more out of my data:
 - I can include semi-quantitative data (like PID),
 - A best estimate less influenced by "expert judgement" (kriging),
 - Uncertainty estimates of mass and volume (conditional simulation).
- I get integrated 2D and 3D visualization of my data and results:
 - Even of where to collect more data to reduce uncertainty.

How do we do it? (part 2)

D. Analyze the spatial structure of the data

Horizontal structure (TCE) <28 m

an(TCE (mg/kg)))

<u>اق</u>0,5

More variance/difference between TCE concentrations collected further apart

- We run the model based on these structures
- E. Define objectives up front results should support decision-making

Vertical structure (TCE) <6 m

Cross-variograms PID-TCE

⁷ *Per Loll, DMR A/S* NORDROCS, September 5th, 2018

How do we do it? (part 3)

F. Perform kriging (obtain best estimate)

How do we do it? (part 3)

F. Perform kriging (obtain best estimate)

Mass estimate: 183 kg TCE in two hot-spots ~64% in volumes with TCE > 5 mg/kg ~86% in eastern hot-spot

9 *Per Loll, DMR A/S* NORDROCS, September 5th, 2018

How do we do it? (part 4)

G. Perform conditional simulation (Monte Carlo simulation)

Mass estimate: 183 kg TCE @ 90% [137-266 kg]

10 *Per Loll, DMR A/S* NORDROCS, September 5th, 2018

How do we do it? (part 4)

- G. Perform conditional simulation (Monte Carlo simulation)
 - The data allows to work at the 17,5% risk level (5 mg/kg) for remediation

How do we do it? (part 4)

- G. Perform conditional simulation (Monte Carlo simulation)
 - The most uncertain parts of the data at the 17,5% risk level (5 mg/kg)

Uncertain volumes with a risk of having high concentrations (>5 mg/kg) can now be targeted for further sampling.

X (m)

Discussion about uncertainties

• We have to redefine our strategy when working with uncertainty!

¹³ *Per Loll, DMR A/S* NORDROCS, September 5th, 2018

Can we do more with less data, too?

- Geostatistical software can make it easy to visualize our data.
- Kriging provides an unbiased estimate of contaminate mass and location – less based on "expert judgement".
- Something like this:

Boring	Dybde	Benzen	C6-C10	C10-C15	C15-C20	C20-C35	THC
	m.u.t.	mg/kg TS					
B101	0,5	i.p.	30	260	13	i.p.	300
B101	4,0	i.p.	150	1.100	65	i.p.	1.400
B101	6,0	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B102	0,2	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B102	4,0	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B103	0,2	i.p.	i.p.	i.p.	i.p.	44	44
B103	4,0	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B104	0,2	i.p.	i.p.	15	i.p.	i.p.	15
B104	4,5	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B105	0,2	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B105	4,5	i.p.	860	4.700	730	160	6.400
B105	6,5	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B106	0,2	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B106	3,0	i.p.	62	390	41	i.p.	490
B106	5,5	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B106	7,0	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B109	0,2	i.p.	35	350	41	88	510
B109	3,5	i.p.	77	540	21	i.p.	640
B109	5,5	i.p.	97	850	27	i.p.	980
B109	6,0	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B110	5,0	i.p.	i.p.	65	i.p.	i.p.	65
B110	5,5	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B111	4,0	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
B112	4,5	i.p.	i.p.	i.p.	i.p.	i.p.	i.p.
Jordkvalitetskriterier		1,5	25	40	55	100	100
Afskæringskriterium		-	-	-	-	300	-

- 10 boreholes
- 24 soil samples
- 144 PID measurements
- 14 *Per Loll, DMR A/S* NORDROCS, September 5th, 2018

Can we do more with less data, too?

• Can turn into this (kriging THC > 100 mg/kg):

<u>Summary</u>

- Geostatistical modelling can help us get the most out of our money.
- With today's data density, we need only to apply the right tools.

